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Abstract 

 
Recent small-cell (< 150-atom) quantum molecular dynamics (QMD) simulations for Ta 

based on density functional theory (DFT) have predicted a hexagonal omega (hex-ω) 

phase more stable than the normal bcc phase at high temperature (T) and pressure (P) 

above 70 GPa [Burakovsky et al., Phys. Rev. Lett. 104, 255702 (2010)].  Here we 

examine possible high-T ,P  polymorphism in Ta with complementary DFT-based model 

generalized pseudopotential theory (MGPT) multi-ion interatomic potentials, which 

allow accurate treatment of much larger system sizes (up to ~ 80000 atoms).  We focus 

on candidate bcc, A15, fcc, hcp, and hex-ω phases for the high-T ,P  phase diagram to 

420 GPa, studying the mechanical and relative thermodynamic stability of these phases 

for both small and large computational cells.  Our MGPT potentials fully capture the 

T = 0  DFT energetics of these phases, while MGPT-MD simulations demonstrate that 

the higher-energy fcc, hcp and hex-ω structures are only mechanically stabilized at high 

temperature by large, size-dependent, anharmonic vibrational effects, with the stability of 

the hex-ω phase also being found to be a sensitive function of its c / a  ratio.  Both two-

phase and Z-method melting techniques have been used in MGPT-MD simulations to 

determine relative phase stability and its size dependence.  In the large-cell limit, the two-

phase method yields accurate equilibrium melt curves for all five phases, with bcc 

producing the highest melt temperatures at all pressures and hence being the most stable 

phase of those considered.  The two-phase bcc melt curve is also in good agreement with 

dynamic experimental data as well as with the MGPT melt curve calculated from bcc and 



 4 

liquid free energies.  In contrast, we find that the Z method produces only an upper bound 

to the equilibrium melt curve in the large-cell limit.  For the bcc and hex-ω structures, 

however, this is a close upper bound within 5% of the two-phase results, although for the 

A15, fcc, and hcp structures, the Z-melt curves are 25-35% higher in temperature than the 

two-phase results.  Nonetheless, the Z method has allowed us to study melt size effects in 

detail.  We find these effects to be either small or modest for the cubic bcc, A15, and fcc 

structures, but to have a large impact on the hexagonal hcp and hex-ω melt curves, which 

are dramatically pushed above that of bcc for simulation cells less than a 150 atoms.  The 

melt size effects are driven by and closely correlated with similar size effects on the 

mechanical stability and the vibrational anharmonicity.  We further show that for the 

same simulation cell sizes and choice of c / a  ratio, the MGPT-MD bcc and hex-ω melt 

curves are in good agreement with the QMD results, so the QMD prediction is confirmed 

in the small-cell limit.  But in the large-cell limit, the MGPT-MD hex-ω melt curve is 

always lowered below that of bcc for any choice of c / a , so bcc is the most stable phase.  

We conclude that for the non-bcc Ta phases studied, one requires simulation cells of at 

least 250-500 atoms to be free of size effects impacting mechanical and thermodynamic 

phase stability. 

 

PACS: 81.30.Bx, 64.70.D-, 64.60.My, 71.15.Pd 
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I. INTRODUCTION 
 
At ambient pressure, high-temperature polymorphism in the 5d bcc metals tantalum (Ta) 

and tungsten (W) has been of long-standing historical interest because of the presence of 

a mechanically stable and energetically competitive A15 structure [1,2], which is well 

known to occur in the phase diagrams of respective group-VB and -VIB binary 

compounds and alloys.  In elemental W, the A15 structure can be realized by the 

hydrogen reduction of WO3 and is alternatively known as the β-W structure [3].  In 

elemental Ta, experimental evidence indicates that an A15 phase can be solidified from 

the supercooled liquid [1], and quantum-based atomistic simulations [2,4], using 

molecular dynamics (MD) with model generalized pseudopotential theory (MGPT) 

interatomic potentials [2,5,6], have confirmed the intense competition between the bcc 

and A15 structures during rapid solidification. 

 
More recently, research interest in high-temperature polymorphism in the bcc transition 

metals has re-emerged in connection with unexpected results from static high-pressure 

melting experiments, where laser-heated diamond-anvil-cell (DAC) measurements on V 

[7], Ta [7,8], Mo [7,9] and W [7] have indicated only small increases in the melting 

temperature Tm  with increasing melting pressure Pm  up to 100 GPa.  These flat Tm(Pm )  

melt curves strongly conflict with the steep melt curves indicated by dynamic 

experimental data, namely, the large melting slopes dTm / dPm  obtained for Nb [10], Ta 

[11,12], Mo [11] and W [12,13] at low pressure from isobaric expansion measurements 

and the high shock melt temperatures at high pressure obtained for V at 225 GPa [14], Ta 

at 295 GPa [15,16] and Mo at 390 GPa [17] from sound velocity measurements and 

either calculated equations of state [14,15,17] or a measured shock temperature via 

pyrometry [16].  In each case, at the observed shock melt pressure, the estimated shock 

melt temperature is at least a factor of two greater than the melt temperature extrapolated 

from the DAC data.  Moreover, recent theoretical melting results for Ta [2,18-22] and 

Mo [23-25], based on either first-principles density-functional-theory (DFT) [26] data 

input into various melt methodologies or direct DFT calculation, have all produced steep 

melt curves in qualitative agreement with the dynamic data. 
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The conflict between flat and steep melt curves in bcc transition metals has led to a 

decade of controversy concerning the correct interpretation of the DAC measurements, 

with considerable follow-up research on the high-T ,P  phase diagram in these materials, 

including theoretical evidence for possible undiscovered phases and solid-solid phase 

transitions prior to melt [22,24,25,27] and an alternative DAC measurement that yields a 

much steeper Tm(Pm )  melt curve in Ta [28].  Recent DFT-based quantum molecular 

dynamics (QMD) simulations in Ta [22] and Mo [24] have predicted that there is at least 

one additional solid phase more stable than bcc in each material under high-T ,P  

conditions.  In the case of Mo, a stable high-temperature fcc phase above 150 GPa has 

been found to be possible [24], and this might explain an observed break in the measured 

sound velocity near 210 GPa [17] prior to shock melt at 390 GPa.  In the case of Ta, a 

stable high-temperature hexagonal omega (hex-ω) phase above 70 GPa has been found 

possible that is consistent with a bcc → hex-ω transition on the shock Hugoniot near 100 

GPa [22], where a similar break in the measured sound velocity is indicated [15,22] prior 

to shock melt at 295 GPa.  The presence of a hex-ω phase has also been reported in a 

shock-recovered Ta sample [29], although the material was shocked to only 45 GPa and 

~ 550 K.  In addition, MGPT-MD simulations on Ta under an applied shear stress [27] 

have revealed that the bcc structure undergoes an order to partial disorder transition at the 

temperature and pressure conditions of the original DAC melt measurements [7,8].  This 

behavior was interpreted as a Bingham-like plastic flow and is consistent with both the 

elastic softening of the bcc structure found in an earlier MGPT study of high-T ,P  

elasticity in Ta [30] and the general conditions needed for the appearance of other 

mechanically stable and energetically competitive structures. 

 

Perhaps the most interesting and challenging aspect of high-T ,P  polymorphism in the 

bcc transition metals is that the structural-energy landscape in these materials at high 

temperature is completely different than at low temperature.  At zero temperature, the bcc 

structure is very stable both mechanically and thermodynamically, and with the exception 

of the A15 structure in Ta and W near ambient pressure, all other structures are much 

higher in energy and unstable mechanically.  In the case of Ta, this has been quite clearly 

demonstrated with first-principles DFT calculations, where the bcc structure is predicted 
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to be the stable phase to at least 1000 GPa [22,31], while alternate A15, hex-ω, fcc, hcp 

and dhcp structures all have calculated imaginary quasi-harmonic phonon frequencies 

over this pressure range [22].  The latter elastically soft structures are only mechanically 

stabilized at high temperature by large anharmonic vibrational effects (phonon-phonon 

interactions), and become competitive with bcc via the equally large effect of temperature 

on the underlying electronic structure, which strongly impacts the free-energy differences 

between phases.  Accurate modeling of high-T ,P  phase stability and polymorphism in 

bcc transition metals thus requires not only robust quantum mechanics, but robust 

statistical mechanics and free-energy determination as well.  In this regard, QMD and 

MGPT-MD simulations are largely complementary.  In principle, DFT-based QMD 

simulations provide robust quantum mechanics, but these simulations are rather severely 

limited by computational cell size and time scale.  In the Ta and Mo QMD polymorphism 

studies [22,24], for example, the simulation cell sizes considered were only between 32 

and 144 atoms.  In the MGPT approach [2,5,6], on the other hand, the DFT quantum-

mechanical framework is retained, but the electronic structure is effectively course-

grained by a multi-ion expansion of the total-energy functional, which is truncated 

beyond four-ion interactions.  In MGPT-MD simulations, this allows one to capture the 

crucial DFT quantum mechanics, while providing up to six orders of magnitude increase 

in computational speed over QMD and hence the possibility of much more robust 

statistical mechanics in polymorphism studies, with no important limitations on either 

cell size or simulation duration. 

 

Deriving free energies directly from QMD simulations is also extremely difficult and 

such energies are not available for Ta or Mo phases.  On the other hand, an efficient 

MGPT-MD free-energy scheme has been developed and applied to the stable bcc and 

liquid phases of Ta [32].  This scheme is currently being extended to metastable solid 

phases as well, but free-energy data does not yet exist for any of the possible 

polymorphic structures.  In lieu of free-energy data, dynamic melting methods can be 

used in either the QMD or MGPT-MD approaches as a means of determining the relative 

stability of different solid phases.  Specifically, for any high-temperature mechanically 

stable phase the temperature can be raised and a melt point determined.  At a given 



 8 

pressure, the solid phase with the highest melt temperature is judged to be the most 

thermodynamically stable phase.  Two dynamic melt methods that can be so applied to 

polymorphism studies are the well-known two-phase coexistence method due originally 

to Morris et al. [33] and the more recent so-called Z method of Belonoshko et al. [34].  

The latter purports to offer a shortcut useful for QMD simulations and was the principal 

melt method used in the Ta and Mo polymorphism studies [22,24]. 

 
The primary purpose of the present paper is to report a comprehensive study of 

polymorphism and high-pressure melt in Ta using the MGPT-MD approach.  To compare 

and contrast our results with the recent QMD study in Ta [22], we consider melt out of 

the bcc, A15, fcc, hcp and hex-ω solid phases with both small and large computational 

cells and with both the two-phase and Z melt methods.  A few Z-method MGPT-MD 

melt results were previously reported in Ref. 22 based on version-4 MGPT potentials 

(denoted here as Ta4), which have also been used in other recent Ta applications 

[4,6,21,25,27,30].  In Sec. II we briefly review the MGPT method and discuss the latest 

version-6.8x Ta MGPT potentials [32] used in the present study.  These potentials, 

denoted here as Ta6.8x, represent a useful systematic numerical improvement over the 

Ta4 potentials.  We also discuss in Sec. II our specific implementations of the two-phase 

and Z melt methods, and benchmark bcc melt curves obtained from those methods 

against one obtained directly from free energies.  Then in Sec. III we consider the low- 

and high-temperature mechanical stability of the five solid phases treated in this paper.  

We quantify the quality of the mechanical stability achieved in our simulations of these 

phases at high temperature via accurate calculation of the stress tensor.  We also quantify 

the degree of anharmonic vibrational behavior exhibited in each phase at high 

temperature.  Next in Sec. IV we assess the importance of size effects and melt method 

for each of the five candidate phases.  We obtain large-cell MGPT-MD predictions of 

relative phase stability with both the two-phase and Z methods, while reconciling small-

cell QMD and MGPT-MD results.  Finally, we conclude in Sec. V and discuss the 

implications of our results for the Ta high-pressure phase diagram. 
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II. THEORETICAL and COMPUTATIONAL METHODS 

 
In this section we first briefly review the origin and framework of the MGPT method, and 

discuss the specific Ta6.8x potentials used in the present work.  We then discuss the 

methods of melt calculation to be used in determining relative phase stability for the 

different possible polymorphs.  We include in the latter discussion determination of the 

bcc melt curve from bcc and liquid free energies as a benchmark for the dynamic two-

phase and Z methods. 

 
A. MGPT interatomic potentials 

 
Within DFT quantum mechanics, generalized pseudopotential theory (GPT) provides a 

fundamental approach to first-principles interatomic potentials in transition metals [35].  

In the GPT, a mixed wave-function basis of plane waves and localized, atomic-like d 

states is used to expand the electron density and total energy of the system in terms of 

weak sp pseudopotential, d-d tight-binding, and sp-d hybridization matrix elements, 

which effectively couple different ion sites.  For a bulk metal at atomic volume Ω, one 

derives a real-space total-energy functional of the N ion positions R ! Ri{ }  in the form 

 

 Etot (R;!) = NEvol(!)+
1
2

'v2 (ij;!
i, j
" )+ 1

6
'v3(ijk;!

i, j ,k
" )+ 1

24
'v4 (ijkl;!

i, j ,k ,l
" )  ,         (1) 

 
where the prime on each summation sign denotes the exclusion of all self-interaction 

terms from the summation.  The leading volume term in this expansion Evol  as well as the 

two-, three-, and four-ion interatomic potentials, v2 , v3 , and v4 , depend explicitly on 

atomic volume but are structure independent and transferable to all bulk ion 

configurations, either ordered or disordered.  This includes all possible structural phases 

as well as the imperfect solid with point and extended defects present.  The angular-force 

multi-ion potentials v3  and v4  in Eq. (1) reflect directional bonding contributions from 

partially filled d bands and are important for the mid-period transition metals.  In the full 

first-principles GPT, however, v3  and v4  are generally long-ranged, multidimensional 

functions that cannot be tabulated for application purposes, and need to be recalculated at 
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each usage.  To overcome this limitation, the simplified model GPT or MGPT has been 

developed for bcc transition metals [5] in which shorter-ranged, analytic potential forms 

are achieved for v3  and v4  that can be readily applied to large-scale atomistic simulations 

[2,5,6]. 

 
The MGPT is derived from the GPT through a series of systematic approximations 

applicable to mid-period transition metals with nearly half-filled d bands.  Equation (1) 

for the total-energy functional is maintained in the MGPT but the multi-ion potentials v2 , 

v3 , and v4  are simplified in three main steps.  First, it is noted that the sp-d hybridization 

contributions to the potentials destructively interfere for half-filled d bands, so these 

contributions are neglected.  Second, highly symmetrical canonical d bands [5] are 

introduced to allow the remaining d-state band-structure contributions to the potentials to 

be evaluated analytically in terms of a single radial function f (r)  and three universal 

angular functions L, P and M, which depend only on d symmetry [5].  Finally, additional 

multi-ion d-state non-orthogonality contributions are folded back into v2  as part of a 

short-ranged repulsive “hard-core” potential v2
hc .  The two-ion pair potential in the 

MGPT then has the form 

 
v2 (r,!) = v2

sp (r,!)+ v2
hc (r,!)+ va (!)[ f (r)]

4 " vb (!)[ f (r)]
2  ,                              (2) 

 
where v2

sp  is an sp pseudopotential contribution, and va  and vb  are volume-dependent d-

band coefficients.  Here f (r) = (1.8RWS / r)
p , where RWS  is the Wigner-Seitz radius and p 

is a weakly volume-dependent parameter optimized in the range 4-6, with a Gaussian 

cutoff introduced beyond the bcc second-neighbor distance.  For pure canonical d bands, 

 p = 2!+1= 5  with  ! = 2 , but in Ta applications we have taken p = 4  at the observed 

equilibrium volume !0 = 121.6  a.u., with p increasing monotonically for decreasing Ω. 

 
The three- and four-ion potentials in the MGPT contain correspondingly simplified multi-

ion d-band contributions and can be written in terms of three and six radial distances, rn , 

respectively, and dependent angles, !n : 
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v3(r1,r2,r3;!) = vc(!) f (r1) f (r2 ) f (r3)L("1,"2,"3)+ vd (!){[ f (r1) f (r2 )]

2P("3)
+[ f (r2 ) f (r3)]

2P("1)+ [ f (r3) f (r1)]
2P("2 )}

       (3) 

and 

 
v4 (r1,r2,r3,r4 ,r5,r6;!) = ve(!)[ f (r1) f (r2 ) f (r3) f (r4 )M ("1,"2,"3,"4 ,"5,"6 )

+ f (r3) f (r2 ) f (r6 ) f (r5 )M ("7,"8,"9,"10,"5,"12 )
+ f (r1) f (r6 ) f (r4 ) f (r3)M ("11,"12,"5,"6,"3,"4 )]

 ,           (4) 

 
where vc , vd , and ve  are additional volume-dependent d-band coefficients.  The specific 

three- and four-ion geometries assumed in Eqs. (3) and (4) are defined in Figs. 4a and 6, 

respectively, of the first paper in Ref. [5]. 

 
In the MGPT, the two-ion potential contributions v2

sp  and v2
hc  in Eq. (2) are determined 

from first-principles, as in the full GPT.  The remaining five d-band coefficients va , vb , 

vc , vd , and ve  in Eqs. (2)-(4) are also well-defined material parameters that depend on d-

band filling and width.  However, to compensate for the approximations introduced into 

the MGPT, these latter quantities, together with the volume term Evol  in Eq. (1), are fit to 

a combination of experimental and first-principles DFT data on basic material properties, 

subject to the theoretical constraints  vb ! va > 0  and ve > vd > va > 0 .  Specifically for the 

group-VB and -VIB metals, we fit, as a function of volume in the bcc phase, a blend of 

experimental data at ambient pressure and DFT data at high pressure on the cold equation 

of state, shear elastic moduli, unrelaxed vacancy formation energy, and the Debye 

temperature, subject to the additional constraint of the compressibility sum rule, which 

reduces the number of independent parameters from six to five.  In the case of Ta, we 

have refined this basic scheme over a number of generations of MGPT potentials, with 

the closely related Ta3 [2] and Ta4 [2,36] potentials being the first published versions.  

These latter two versions were developed over a wide pressure range extending to 1000 

GPa and differ only in the treatment of input unrelaxed vacancy formation energies, 

which in Ta4 were uniformly shifted upward by 0.15 eV at all volumes from the values 

used in Ta3.  With the Ta4 potentials, the calculated relaxed vacancy formation energy at 

ambient pressure is then in better agreement with both experiment and DFT calculations 
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[36], and the calculated melt curve [21,37] is significantly lowered, as discussed below in 

Sec. IIB1.  In the present Ta6.8x potentials [32], three additional numerical refinements 

have been added to the Ta4 scheme.  First, a smoother blend of the input experimental 

and DFT data has been used through explicit analytic representations of that data, 

although this restricts the effective high-pressure limit to about 420 GPa in Ta6.8x.  

Second, an improved analytic fit to the hard-core potential v2
hc  in Eq. (2) has been 

introduced.  Finally, these latter two improvements have allowed the MGPT potentials to 

be defined on a finer volume mesh, producing more accurate calculated thermodynamics 

from quasi-harmonic lattice dynamics (QHLD) at low temperature and MGPT-MD 

simulations at high temperature. 

 
B. Methods of melt calculation 

 
As in other recent Ta4 MGPT applications [4,6,21,25,27,32], all of the melt methods 

discussed below apply the Ta6.8x potentials using the advanced matrix representation of 

MGPT [6], as implemented in the parallel molecular dynamics code ddcMD [38].  In 

ddcMD, the angular functions L, P, and M in Eqs. (3) and (4) are evaluated on the fly 

during an MGPT-MD simulation through d-state matrix multiplication, while the multi-

ion forces that move the ions are determined analytically.  This provides maximum 

computational efficiency and accuracy.  The additional advanced MGPT features of non-

canonical d bands and electron-temperature dependent potentials, recently developed and 

applied to the narrow d-band metal Mo [25], are much less important in wider-band 5d 

metals like Ta and are not included in Ta6.8x. 

 
In addition, and as was the case in the recent Ta QMD simulations [22], all of the present 

MGPT-MD simulations have been performed in standard fixed-shape computational cells 

at constant volume.  Cubic unit cells of 2, 4, and 8 atoms have been used for the bcc, fcc 

and A15 structures, respectively, while hexagonal unit cells of 2 and 3 atoms have been 

used for the hcp and hex-ω structures, respectively.  Thus, for example, a 250-atom 

MGPT-MD simulation in the bcc phase corresponds to a cubic 5 ! 5 ! 5  simulation cell.  

For the hcp and hex-ω structures, the internal c / a  ratio has been treated as a fixed input 

structural parameter and has not been relaxed during the simulation. 
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1. Free energies 

 
For Ta the thermodynamics of the system is well described by the conventional weak-

coupling model, in which the Helmholtz free energy Atot  at volume Ω and temperature T 

is obtained as a sum of cold, ion-thermal, and electron-thermal contributions: 

 
 Atot (!,T ) = E0 (!)+ Aion (!,T )+ Ael (!,T )  .                                                             (5) 

 
By the method of construction of the MGPT potentials, the cold energy E0  is accurately 

described via Eq. (1) evaluated in the bcc structure at T = 0 .  The ion-thermal free-

energy component Aion  in Eq. (5) can also be evaluated for the bcc and liquid phases of 

Ta from the MGPT potentials, as first described for Ta3 in Ref. [2].  For the Ta4 and 

Ta6.8x potentials, Aion  has been obtained using the new and more efficient free-energy 

scheme developed in Ref. [32].  This latter scheme, which utilizes the statistical 

mechanics principles of thermodynamic integration and reversible-scaling MD (RSMD) 

simulation [39], involves a combination of standard QHLD and MGPT-RSMD 

calculation of anharmonic contributions in the bcc solid, together with MGPT-RSMD 

calculation of corresponding ion-thermal contributions in the liquid.  The final electron-

thermal free-energy component Ael  in Eq. (5) embodies the remaining effects of 

temperature on the structure and occupation of the electronic states of the system.  While 

this contribution can and has been treated at different levels of approximation, an 

accurate treatment was developed in Ref. [2] in terms of configuration-averaged, finite-

temperature DFT calculations in the bcc and liquid phases, using atomic configurations 

obtained from MGPT-MD simulations.  The resulting electron-thermal contribution has 

been found to lower the calculated melt curve by only a small amount (! 5% ), however.  

This contribution has been retained nonetheless and used in reported MGPT free-energy 

melt-curve calculations, both in the previously published Ta3 [2] and Ta4 [21,37] results 

and with the present Ta6.8x result displayed in Figs. 1 and 2 below.  In all subsequent 

results presented in this paper beyond Fig. 2, however, electron-thermal corrections are 

not included in the melt results. 
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Fig. 1  High-pressure melt curve of Ta out of the bcc phase, as calculated from bcc and 

liquid free energies via Eq. (5), using Ta3, Ta4, and the present Ta6.8x MGPT multi-ion 

interatomic potentials. 

 
Figure 1 compares the free-energy-calculated, high-pressure melt curves out of the bcc 

phase of Ta up to 400 GPa, as obtained with the Ta3, Ta4, and Ta6.8x MGPT potentials.  

In all three cases, the MGPT-MD simulations used to determine Aion  for the bcc and 

liquid phases were performed with 250-atom, constant-volume ensembles with periodic 

boundary conditions.  The Ta4 melt curve is lowered significantly below the Ta3 result 

above 100 GPa, with the melt temperature at 400 GPa lower by about 1000 K.  On the 

other hand, and as expected, the Ta4 and Ta6.8x melt results are quite close to one 

another, with the Ta6.8x melt curve calculated slightly lower, except near ambient 

pressure. 

 
In Fig. 2 we compare our calculated Ta6.8x free-energy-based melt curve out of the bcc 

phase against the corresponding fitted QMD result of Burakovsky et al. [22], as well as 

against static [7,8,28] and dynamic [11,15,16] experimental data.  The MGPT and QMD 

melt results are in good accord with each other and with the measured isobaric melt slope  
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Fig. 2  High-pressure melting curve in Ta, as obtained from MGPT Ta6.8x free energies 

and QMD simulations [22] and compared with experimental data from both existing [7,8] 

and new [28] DAC measurements, and with data from isobaric [11] and shock [15,16] 

measurements. 

 
at low pressure [11] and with the measured shock melt point at 295 GPa [15,16].  The flat 

melt curve obtained from existing DAC data [7,8], on the other hand, clearly diverges 

from the theoretical results with increasing pressure.  The new DAC data of Dewaele et 

al. [28] is in much better agreement with theory, but still indicates significantly lower 

melt temperatures than the calculated values in the experimental 50-125 GPa pressure 

range.  In the dynamic data, the structure of the melting solid phase is not determined, 

while in all of the DAC experiments the reported melting solid phase is bcc, with no 

solid-solid phase transition detected prior to melting. 

 
2. Two-phase simulation 

 
In the dynamic two-phase and Z melt methods as applied here, melting is determined 

entirely from the MGPT potentials via MD simulation without any correction for the 

small electron-thermal free energy included above in Eq. (5).  The melt curves so 
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obtained thus correspond to solid and liquid free energies in the Ael = 0  limit.  Our two-

phase melt method [25,37] is a robust version of the standard two-phase method of 

Morris et al. [33].  In this approach, equilibrated solid and liquid subcells of equal size 

and shape are placed in contact and the movement of the solid-liquid interface is 

monitored as a function of pressure for a trial melt temperature Tm .  Periodic boundary 

conditions are applied to all remaining faces of the subcells.  The equilibrium melting 

pressure Pm(Tm )  is achieved when the solid-liquid interface remains stationary and 

neither the solid nor the liquid phase is growing at the expense of the other. 

 
Our MGPT-MD two-phase simulation method is implemented with ddcMD in a series of 

three main steps for each melt temperature Tm  considered.  The first step is to run 

MGPT-MD subcell simulations to determine accurate solid and liquid pressure-volume 

relations at temperature Tm  that are needed to equalize solid and liquid pressures in the 

full simulation cell.  Constant temperature is maintained in ddcMD simulations with a 

special Langevin thermostat [4,38].  The next step is to initialize and run the full-cell 

two-phase simulations for a range of atomic volumes, each corresponding to a solid trial 

pressure Ptr (!,Tm ) .  For each volume Ω, we start with a bcc atomic arrangement of Ta 

atoms in the full cell and randomly remove the appropriate number of atoms from the 

liquid sub-cell such that the pressures of the solid and liquid phases will be equal to Ptr  at 

temperature Tm .  With the atoms in the solid subcell frozen, the liquid subcell is first 

briefly equilibrated at Tm , then melted at a high temperature (20000 K in the present Ta 

simulations), and finally cooled back to Tm  as a liquid.  We then allow all of the atoms in 

the full cell to move in an extended MGPT-MD simulation at pressure Ptr  and 

accumulate statistics needed to indicate any movement of the solid-liquid interface. 

 
The final step is to use the accumulated statistics to trace the movement of the solid-

liquid interface as a function of Ptr (!,Tm ) , or more precisely to determine the growth of 

the solid phase into the liquid if Ptr > Pm  or the growth of the liquid phase into the solid if 

Ptr < Pm .  To do this, we employ a time-dependent short-range order parameter,  !!(t) , 

defined for angular momentum  !  as [40] 
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!!(t) = 4" Y!m

m
# 2

/ (2!+1)  ,                                                                             (6) 

 
where 
 

 
Y!m = !(rcut " Rij

i, j
# )Y!m (Ri "R j )  ,                                                                     (7) 

 
with !  a step function and rcut  a chosen cutoff radius.  Specifically, we accumulate 

statistics for the  ! = 6  order parameter !6 (t)  as a function of simulation time t .  The 

parameter !6 (t)  is near zero for the liquid phase and is a non-zero constant for the solid 

phase, so it will tend to one or the other as a given two-phase simulation proceeds.  We 

obtain nearly linear plots of !6 (t)  versus t  until the two-phase system either completely 

melts or is completely solidified.  For the atomic volumes !  considered, the slopes of 

the !6 (t)  curves are plotted versus !  and fit to a quadratic equation.  The atomic 

volume that produces a zero slope is taken as the solid melting atomic volume !m  at 

temperature Tm , such that Pm = Ptr (!m,Tm ) .  This whole three-step process is repeated 

for as many melt temperatures as desired to obtain the two-phase Tm(Pm )  melt curve. 

 
The MGPT two-phase melt curve so obtained for Ta melting out of the bcc phase is 

displayed in Fig. 3 and compared with the corresponding free-energy result in the Ael = 0  

limit.  These results and all remaining MGPT results reported below in this paper were 

obtained with the Ta6.8x potentials.  The two-phase and free-energy melt curves in Fig. 3 

are essentially identical below 100 GPa and differ only slightly by 1-2% above 100 GPa.  

We believe the latter difference is within the numerical error of either calculation.  In this 

regard, the two-phase result shown was based on nine calculated melt pressures with an 

initial total of 78,732 atoms used in each simulation, corresponding to a 54 ! 27 ! 27  full 

cell.  While for two-phase melting out of the bcc structure, net size effects beyond 256 

atoms ( 8 ! 4 ! 4  full cell) are negligible, the use of a large number of atoms greatly 

reduces the statistical error bars on each individual melt point, so that a smooth melt 

curve is obtained directly from the calculated points.  The free-energy result, on the other 

hand, was obtained from 250-atom MGPT-RSMD simulations, as discussed above. 
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Fig. 3  High-pressure melt curve of Ta out of the bcc phase, as calculated with the present 

Z, two-phase, and free-energy methods using Ta6.8x MGPT potentials, but without 

correction for electron-thermal contributions, i.e., with Ael = 0  in Eq. (5). 

 
3. Z method 

 
The Z method of Belonoshko et al. [34] attempts to connect the homogeneous melting of 

a solid at a critical temperature Tc , as obtained from superheating the material in an MD 

simulation at constant volume with periodic boundary conditions, to the true equilibrium 

melt temperature Tm .  The underlying hypothesis of the method is that for such 

conditions the total energy of the solid Etot
sol  at T = Tc  is equal to the total energy of the 

liquid Etot
liq  at T = Tm : 

 
 Etot

sol (!,Tc ) = Etot
liq (!,Tm )  .                                                                                         (8) 

 
Belonoshko et al. [34] proposed a simple dynamic approach to implement the content of 

Eq. (8): perform a small sequence of MD simulations in a micro-canonical ensemble at 

constant energy and constant volume, adding kinetic energy to increase the temperature 
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in the solid phase until Tc  is reached, and then watch the system spontaneously drop in 

temperature during melt to Tm  in the liquid.  Adding additional kinetic energy increases 

the temperature of the system in the liquid, so that on a temperature-pressure diagram the 

whole path followed resembles the letter Z.  They successfully tested their method on a 

simple Lennard-Jones model of argon and an embedded-atom method (EAM) [41] model 

of copper.  Additional shortcuts to implement the Z method have also been proposed and 

applied to QMD melt simulations [24].  Recently, Alfè et al. [42] did an extended 

analysis of the Z method in the context of EAM-MD and QMD melt simulations on iron.  

They found that there is a size-dependent waiting time for melt to occur after the critical 

point in the solid is reached, resulting in a strong tendency to overestimate Tc  and Tm
when the method is implemented with just a few simulations. 

 
In our present use of the Z method, we are not directly concerned with either the 

efficiency or the specific methodology of the various constant-energy implementations of 

Eq. (8), but rather with the physical accuracy of this equation in determining the 

equilibrium melt temperature.  As a result, we have implemented the Z method in an 

alternate way through a series of incremented solid and liquid MGPT-MD simulations 

using ddcMD, with each simulation performed in a canonical ensemble at constant 

temperature and constant volume to determine as accurately as possible the functions 

Etot
sol (!,T )  and Etot

liq (!,T )  together with the critical temperature Tc .  We then solve Eq. 

(8) for Tm .  An example of this approach is illustrated in Fig. 4 for melting out of the bcc 

phase of Ta at a single representative volume (!0 = 121.6  a.u.), with 250 atoms used in a 

periodic simulation cell.  In this example, we ascended the solid portion of the Z curve 

with ~ 30 ps MGPT-MD simulations in increments of 500 K to 5000 K, at which point 

we increased the simulation duration to ~ 70 ps and reduced the temperature increment to 

100 K until critical melting was encountered at 5100 K.  To determine Etot
liq (!,T ) , we 

first melted the bcc solid at high temperature and established a good equilibrium liquid 

state, and then similarly descended the liquid portion of the Z curve in increments of 500 

K.  We estimate that we thereby determine both Tc  and Tm  in Eq. (8) to an accuracy of 

about ±100  K for a given MGPT potential.  As can be seen in Fig. 4, our Z-calculated  
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Fig. 4  Melt temperature Tm  in bcc Ta at an atomic volume of 121.6 a.u., as determined 

from the present MGPT implementation of the Z method and as compared with the 

corresponding free-energy melt curve. 

 
Tm  still lies about 200 K or 5% above the corresponding free-energy calculated melt 

curve.  A similar overestimate of Tm  is found all along the bcc melt curve, as shown in 

Fig. 3, where the Z-method results were obtained with 2000-atom simulations (a

10 !10 !10  computational cell).  We thus conclude that the Z method as applied here to 

bcc Ta with MGPT potentials provides only a close upper bound to the equilibrium melt 

curve.  We will further demonstrate in Sec. IV that the quantitative degree of the upper 

bound is dependent on the detailed nature of the solid melting phase.  At the same time, 

the Z method is readily applicable to both small and large computational cells, so that it is 

a convenient approach to study size effects on the melt curve for the remaining candidate 

polymorphic phases. 
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III. HIGH-TEMPERATURE MECHANICAL STABILITY of SOLID PHASES 

 
In this section we discuss the mechanical stability of our five identified candidate high-

T ,P  solid phases of Ta: bcc, A15, fcc, hcp, and hex-ω.  In this regard, the hcp and hex-ω 

structures also have an internal c / a  parameter to consider.  For the hcp structure, we fix 

this parameter at its ideal value of c / a = 8 / 3 ! 1.633 , while for hex-ω this is a 

quantity that requires additional study and is discussed in detail below in Sec. IIIB.  At 

low temperature, mechanical stability can be addressed by calculation of the quasi-

harmonic phonon spectra, and we have calculated such spectra for selected phases over 

the volume and pressure ranges of interest here.  More generally, we study the 

mechanical stability of individual phases through MGPT-MD simulation and appropriate 

diagnostic tools, principally calculation of the stress tensor.  At high temperature, we 

simultaneously quantify the degree of vibrational anharmonicity in a given phase through 

calculation of the thermal energy. 

 
A. Quasi-harmonic phonons 

 
In agreement with first-principles DFT calculations at T = 0  [22,31], MGPT Ta is both 

mechanically and thermodynamically stable in the bcc phase over the present pressure 

range, which extends up to 420 GPa, with real quasi-harmonic phonons frequencies 

calculated throughout the Brillouin zone (BZ) at all volumes.  The quality of the MGPT 

phonons obtained with the Ta6.8x potentials is indicated in Fig. 5, where calculated 

frequencies at the [100] and [110] zone boundaries, the H and N points in the BZ, 

respectively, are compared with DFT results [31] for a range of volumes and with 

experiment [43] at ambient conditions.  There is good agreement among the MGPT, 

DFT, and experimental results, except for the anomalous transverse T2[110]  phonon 

frequency, which is systematically underestimated with MGPT. 

 
Similar quasi-harmonic MGPT phonon spectra have been calculated for the higher-

energy fcc and hcp structures, and these results reveal imaginary phonon frequencies at 

all volumes considered.  Representative results at a compressed volume of 88.65 a.u.,  
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Fig. 5  Volume dependence of the longitudinal (L) and transverse (T, T1 , T2 ) zone-

boundary phonon frequencies in bcc Ta, as calculated from the present MGPT Ta6.8x 

potentials and as compared with previous DFT results [31] and with experiment [43].  (a) 

Degenerate H-point L[100]  and T [100]  phonons, and N point T1[110]  phonon; (b) N-

point L[110]  and T2[110]  phonons. 

 
corresponding to a T = 0  pressure of 109 GPa, are displayed in Fig. 6.  In both the fcc 

and hcp structures, entire branches of phonon spectra are seen to be imaginary, indicating 

that these structures are indeed highly unstable mechanically at low temperature.  This 

outcome also qualitatively agrees with DFT phonon calculations on these structures [22]. 

 
In the more complex A15 and hex-ω structures, with more than two atoms per primitive 

unit cell, we have alternately examined the low-temperature mechanical stability of these 

phases with MGPT-MD simulations.  In contrast to the fcc and hcp structures, the lower-

energy A15 structure, with eight atoms per primitive unit cell, was thereby found to be 

everywhere mechanically stable at 100 K.  In this case, the mechanical stability of the 

structure was revealed both through calculated pair and angular distribution functions and 

through the calculated stress tensor, which displayed equal diagonal components and 

negligible off-diagonal components. 
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Fig. 6  Quasi-harmonic MGPT phonon spectra for mechanically unstable phases of Ta at 

low temperature, as calculated at a representative atomic volume of 88.65 a.u. with the 

present Ta6.8x potentials.  Imaginary phonon frequencies (dashed lines) are plotted as 

negative numbers.  (a) fcc structure; (b) ideal hcp structure. 

 
B. Hexagonal omega phase 

 
It is well known that the hex-ω phase appears in the equilibrium high-pressure phase 

diagrams of the group-IVB metals Ti, Zr, and Hf [44].  A variant of the hex-ω structure, 

the trigonal omega (trig-ω) structure, which contains a second internal parameter z, also 

appears in the phase diagrams of group-IVB alloys with other central transition metals, 

including the group-VB elements V, Nb and Ta.  The ideal hex-ω structure with 

c / a = 3 / 8 ! 0.6124  is coincident with the trig-ω structure for z = 0 , and from that 

point, the trig-ω structure provides a continuous structural path back to the bcc structure, 

which occurs for z = 1/ 6 .  In the Burakovsky et al. QMD simulations on Ta [22], it was 

found that if the material was initially placed in an ideal hex-ω phase, the structure would 

always relax back to bcc [45].  This behavior has been confirmed in our present MGPT-

MD simulations, and suggests that the ideal hex-ω structure sits at an unstable saddle 

point in the c / a , z configuration space.  In addition, at low temperature, where hex-ω is 

mechanically unstable in both QMD and MGPT-MD simulations, the electronic structure 

favors a smaller than ideal c / a  ratio.  This is demonstrated in Fig. 7, where T = 0  DFT 

and MGPT hex-ω − bcc total energy differences for predicted c / a  ratios are compared.   
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Fig. 7  Zero-temperature energetics of the hex-ω structure in Ta, as obtained from first-

principles DFT electronic structure calculations [22] and from the present MGPT Ta6.8x 

interatomic potentials.  (a) Hex-ω − bcc total-energy difference; (b) predicted hex-ω c / a  

ratio from total-energy minimization. 

 
The DFT and MGPT results are in good agreement, but the MGPT c / a  ratios are found 

to be ∼ 0.02 or 3-4% higher than the DFT values.  The T = 0  DFT c / a  values, which 

vary slowly from ~ 0.56 near ambient conditions to ~ 0.58 at high pressure, were used 

directly in the high-T ,P  fixed-cell QMD melt simulations for the hex-ω phase [22].  For 

the present MGPT-MD simulations, on the other hand, we have first studied the quality 

of high-T ,P  hex-ω mechanical stability achieved as a function of c / a . 

 
At high-T,P  conditions, there is, of course, no guarantee that the c / a  ratio optimized on 

the basis of T = 0  total-energy minimization (Fig. 7b) will produce a mechanically stable 

hex-ω structure.  Ion-thermal stabilization of the hex-ω structure will impart a 

temperature dependence to c / a  that cannot easily be determined without testing the 

mechanical stability with dynamical simulations.  In molecular dynamics, this can be 

readily accomplished through in situ calculation of the stress tensor ! .  A signature of 

mechanical stability in a dynamical system is equivalent diagonal, or normal, ! ii  
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components (i.e., ! 11 =! 22 =! 33 ), and negligible off-diagonal, or shear, ! ij  components.  

In our present MGPT-MD simulations, we quantify the first of these conditions with the 

parameter , which describes the deviation of the normal stresses from the pressure: 

 
 !" = (" 11

2 +" 22
2 +" 33

2 ) / P2 # 3  ,                                                                             (9) 

 
where pressure is related to the stress tensor through P = !(" 11 +" 22 +" 33) / 3 .  The 

second condition can be represented by the deviation of the shear stresses from zero, but 

for hex-ω this measure is negligible for a large range of c / a  at high temperature, leading 

to our consideration of 
 
as the primary measure of mechanical stability. 

 
The volume-averaged mechanical stability parameter !"# $%  calculated for the hex-ω 

structure is shown in Fig. 8a as a function of c / a  for high-T  values ranging from 1000 

to 5000 K.  For each temperature considered, !"# $%  displays a large peak separating two 

distinct c / a  regimes of low !" < 0.025  and hence good mechanical stability: (i) near 

the ideal hex-ω value of 0.6124; and (ii) at lower values in the narrow range 0.51-0.53.  

The first regime corresponds to the conditions where the hex-ω structure has relaxed to 

bcc.  Inspection of the radial distribution functions for c / a  values to the right of the 

main peaks in !"# $%  suggests some mixture of the hex-ω and bcc structures has occurred 

in this regime, and that this mixture becomes all or mostly bcc at c / a  = 0.6124.  To the 

left of the main peaks, on the other hand, the material appears to have settled into a clear 

hex-ω structure with good mechanical stability. 

 

To confirm this interpretation of Fig. 8a and to better characterize the structural behavior 

corresponding to the mechanically stable values of c / a , we have tracked the evolution 

of trig-ω z  displacements for systems initially in a hex-ω z = 0  state with a given c / a  

ratio.  The final calculated distribution of z  displacements, denoted by N z( ) , is shown in 

Fig. 8b for three values of c / a  at the specific conditions T =5000 K and ! =80 a.u.  At 

the ideal hex-ω c / a  ratio, we see that N z( )  evolves three equally distributed and well-

defined z  parameters at z = 0  and z = ±0.167 , signifying the presence of a trig-ω  

!"

!"
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Fig. 8  (a) Volume-averaged mechanical stability parameter !"# $%  for the hex-ω phase 

of Ta, as calculated from MGPT Ta6.8x potentials using large 10 !10 !10  computational 

cells.  Here !"  is averaged over the atomic volume !  in the range 65-110 a.u. and is 

shown for temperatures 1000, 3000, and 5000 K. (b) Internal trig-ω z  parameter as 

evolved from a hex-ω z = 0  initial state for c / a  = 0.53, 0.57, and 0.6124.  The 

distribution function N z( )  is evaluated at T =  5000 K and an atomic volume ! =  80 a.u. 

 
structure with z = 0.167  or, equivalently, bcc.  At intermediate c / a  values, where !"  

becomes large, the mechanical instability translates into an incomplete transformation 

into the bcc phase.  This is indicated in Fig 8b by the N z( )  function at c / a  = 0.57 

displaying three broadened, more diffuse peaks that are unequally distributed, suggesting 

the presence of a mixture of hex-ω and bcc.  Finally, the mechanically stable regime at 

low c / a , represented in Fig 8b by the c / a  = 0.53 curve, results in N z( )  no longer 

exhibiting clearly defined z  values but instead a completely diffuse distribution centered 

on z = 0 .  We interpret this behavior as the point at which the internal energy barriers to 

the hex-!  phase are fully overcome, enabling the mechanical stabilization of the 

structure.  However, contrary to what might be expected for hex-ω, the diffuse z  

distribution implies that the calculated structure is probably a somewhat disordered 

variant of the ideal crystalline structure at this lower c / a  ratio.  Regardless, this state is 
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the most mechanically stable and characteristically hex-ω phase attainable that does not 

partially transform into the bcc phase. 

 
For the present MGPT-MD studies of Ta polymorphism, we have used the above results 

to establish a good representative c / a  value for a mechanically stable hex-ω phase over 

the expected high-T,P  conditions that bound the hex-ω melt curve.  As shown in Fig. 8a, 

the  ratio representing the onset of good mechanical stability for the hex-ω phase is 

somewhat dependent on temperature.  Structures at the lower end of the  spectrum 

near 0.51 become fully stable at temperatures greater than 1000 K.  However, as we 

expect the majority of the hex-ω melt curve to lie above 1000 K, a higher value of c / a  = 

0.53 provides the required stability at temperatures more representative of melt 

conditions, T > 3000 K.  We therefore have used this latter ratio in all of the hex-ω 

MGPT-MD simulations performed in the remainder of this paper, except when 

comparing directly with the QMD simulations of Burakovsky et al. [22] in Sec IVB, 

where it is more appropriate to use a c / a  value based on T = 0  total-energy 

minimization.  In this regard, it is noteworthy that c / a  = 0. 53 is significantly smaller 

than the T = 0  MGPT values indicated in Fig. 7b, which are in the range 0.59-0.60.  We 

will comment further in Sec. IVB on the corresponding changes in melt behavior when 

using a T = 0  c / a  ratio of 0.59 as opposed to a high-T value of 0.53. 

 
C. High-temperature stress tensor for other candidate phases 

 
We next consider the high-T,P  mechanical stability of the remaining candidate 

polymorphic phases.  As was shown in Fig. 6, the fcc and hcp structures have imaginary 

phonon modes, which imply mechanical instability at T = 0 .  To perform physically 

relevant melt simulations for these phases, we must first establish that they also attain 

good high-T,P  mechanical stability.  To do this we characterize the stress tensor in the 

same manner as above and consider the mechanical stability parameter !" .  It is now 

more convenient to perform a high-temperature average of !"  than the volume average 

used above.  The temperature-averaged mechanical stability parameter !"# $T  as a 

function of atomic volume is displayed in Fig. 9 for the five phases considered in this 

c / a

c / a
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Fig. 9  Temperature-averaged mechanical stability parameter !"# $T  for the candidate 

polymorphic phases of Ta, as calculated from MGPT Ta6.8x potentials using large 

10 !10 !10  computational cells.  Here !"  has been averaged over temperatures 

between 3000 K and the critical melt point Tc  at each volume.  (a) Cubic bcc, fcc, and 

A15 structures; (b) hexagonal hcp and hex-ω structures, with c / a  ratios of 1.633 and 

0.53, respectively. 

 
work.  Here the temperature average has been taken over the range Tmin < T < Tc , where 

Tmin = 3000  K and Tc  is the volume-dependent critical melt point as defined in Fig. 4.  

The bcc, fcc, and A15 structures (Fig. 9a) all show a high degree of mechanical stability 

over the volume and temperature ranges considered, with !"# $T < 0.002  except for one 

A15 point near 110 a.u.  The hexagonal phases (Fig. 9b) show larger, but still small, 

mechanical instability that decreases with atomic volume.  The small residual instability 

for the hexagonal phases is likely related to our choice of fixed c / a  ratios, where 

realistically c / a  should vary as a function of T  and ! .  However, in comparison to the 

much higher level of mechanical instability displayed in Fig. 8 for the hex-ω structure 

with larger c / a , the magnitude of !"  for the hexagonal phases treated in Fig. 9b is 

acceptably small, with !"# $T < 0.03  for all volumes. 
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Fig. 10  Dependence of the mechanical stability parameter !"  on cell dimension N for 

an N ! N ! N  simulation cell, as obtained for the five candidate polymorphic phases of 

Ta.  The simulations have all been performed at T = 5000 K and an atomic volume of 80 

a.u., with c / a = 1.633  for hcp and 0.53 for hex-ω, for system sizes ranging from 

2 ! 2 ! 2  to 6 ! 6 ! 6 . 

 
An additional point of importance when considering melt behavior is the dependence of 

!"  on the size of the periodic simulation cell.  The size of the cell directly controls the 

available phonon modes and, as such, influences high-T  properties that depend on 

phonon-phonon interactions, especially vibrational anharmonicity and its mediation of 

mechanical stability.  Such an influence is apparent in Fig. 10, which shows the degree of 

mechanical stability achieved as a function of the size of the simulation cell at the 

representative conditions of T = 5000 K and ! =80 a.u.  As given in Fig. 10, the cell 

dimension N represents the effective number of unit cells along each of the three unit 

vectors defining the cell, such that the full simulation cell contains N ! N ! N  unit cells.  

We see that the mechanical stability of all phases is significantly decreased in small 

systems less than 4 ! 4 ! 4 = 64  unit cells in size.  While the cubic structures become 

fully mechanically stable when the system is composed of a minimum of 64 unit cells, 

0.00

0.04

0.08

0.12

2 3 4 5 6

bcc
A15
fcc
hcp
hex-!

" #

Cell dimension N 

Ta



 30 

the hexagonal phases appear to require a larger size of at least 5 ! 5 ! 5 = 125  unit cells to 

achieve their maximum stability.  These limits correspond to 128 atoms for bcc, 256 

atoms for fcc, 512 atoms for A15, 250 atoms for hcp and 375 atoms for hex-ω.  This 

suggests that except for bcc, cell sizes of 250-500 atoms may be required to eliminate 

size effects.  In any case, we can expect such size effects to influence the melt behavior 

derived from small simulation cells, and this possibility will be examined in detail in Sec. 

IVB below in the context of Z-method melting. 

 
D. High-temperature anharmonicity 

 
One may also address the degree of vibrational anharmonicity in a given phase and its 

size dependence more directly.  The phonon-phonon interactions that stabilize phases 

with imaginary quasi-harmonic phonons can be characterized at high-T,P  conditions by 

the apparent amount of anharmonicity displayed in appropriate thermodynamic functions.  

Specifically, we can define a simple but useful percentage measure of anharmonicity in a 

given phase, Qah , by the relation 

 

 Qah (!,T ) = 100[1" Eth (!,T ) / 3kBT ]  ,                                                                (10) 

 

where Eth = Etot ! E0  is the thermal energy of the system in that phase, with Etot  the total 

internal energy.  In the quasi-harmonic limit at high temperature with Ael = Eel = 0 , 

Eth ! 3kBT  and Qah ! 0 .  Figure 11a shows how Qah  varies with atomic volume, as 

calculated from MGPT-MD simulations at a representative temperature T = 5000K for 

the five phases considered in this work.  The bcc and A15 phases show only a minor 

degree of anharmonicity, ~ 0.1% and ~ 1-3% respectively, which in part reflects the low-

T  mechanical stability of these structures.  On the other hand, the metastable fcc and hcp 

phases show a significant and similar degree of anharmonicity, ~ 4-9%, which increases 

with increasing atomic volume, with fcc slightly more anharmonic than hcp over the 

entire volume range.  The hex-ω phase is by and large the most anharmonic of the phases 

considered here and is drastically influenced by the atomic volume.  Over the selected 

atomic volume range, Qah  for hex-ω varies from ~ 40% at high pressure to ~ 10% at low 
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Fig. 11  Vibrational anharmonicity Qah  of candidate polymorphic phases in Ta as a 

function of volume and temperature, as calculated from MGPT-MD simulations with the 

Ta6.8x potentials and large 10 !10 !10  computational cells.  The c / a  ratios used for the 

hcp and hex-ω structures were 1.633 and 0.53, respectively.  (a) Volume dependence for 

T = 5000 K up to the low-pressure melt volume; (b) temperature dependence for atomic 

volume ! = 80 a.u. up to and above melt. 

 
pressure.  Such high anharmonicity may be partially attributed to the fact, as previously 

noted, that the ideal hex-ω structure at c / a = 0.53  undergoes some structural disorder in 

attaining its mechanical stability. 

 
Figure 11b displays the corresponding temperature dependence of the vibrational 

anharmonicity at a representative atomic volume ! = 80  a.u.  For the bcc and A15 

phases Qah  remains small and nearly constant from 1000 to 10000 K, reflecting the 

mechanical stability of these phases at all temperatures.  The anharmonicity Qah  also 

remains nearly constant for the fcc and hcp phases above 4000 K, but rapidly increases 

below that point, while Qah  rapidly increases for the hex-ω phase below about 8000 K.  

This behavior is consistent with greater structural rearrangement as the temperature 

decreases resulting in complete mechanical instability at T = 0 . 

0

10

20

30

40

50

65 80 95 110

bcc
A15
fcc
hcp
hex-!

Q
ah

 (%
)

Atomic volume (a.u.)

Ta (a)

0

10

20

30

40

50

1000 4000 7000 10000

Q
ah

 (%
)

Temperature (K)

(b)



 32 

 
Fig. 12  Dependence of the vibrational anharmonicity Qah  in Ta on size of the simulation 

cell for candidate polymorphic phases, as in Fig. 10.  The calculations were performed at 

! = 5000 K and an atomic volume ! = 80 a.u., with c / a = 1.633  for hcp and 0.53 for 

hex-ω, for system sizes ranging from 2 ! 2 ! 2  to 6 ! 6 ! 6 . 

 
In a manner similar to Fig. 10, one can also calculate the variation in the vibrational 

anharmonicity Qah  as a function of the size of the periodic simulation cell for each of the 

candidate polymorphic phases.  We have done this here for the representative conditions 

T = 5000 K and ! = 80  a.u. and the results are displayed in Fig. 12.  As might be 

expected, trends similar to those in the behavior of mechanical stability !"  are reflected 

in Qah .  Specifically, the hcp and hex-ω structures are significantly influenced at sizes 

less than 4 ! 4 ! 4 = 64  unit cells, while the bcc, fcc, and A15 phases show a smaller 

influence and well converged behavior by 64 unit cells.  In contrast, the hex-ω phase 

requires at least 5 ! 5 ! 5 = 125  unit cells for similar convergence.  Thus the size effects 

displayed in Fig. 10 for !"  and in Fig. 12 for Qah  are indeed very consistent. 
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IV. MELT RESULTS for CANDIDATE HIGH-T ,P  SOLID PHASES 

 
In this section we discuss the high-T ,P  melt behavior of bcc, A15, fcc, hcp, and hex-ω 

Ta, as obtained with both two-phase and Z-method MGPT-MD simulations.  In each 

case, an important consideration is to characterize the effects of the simulation cell size 

on the resulting melt behavior.  There are in fact two main size effects.  The first is the 

statistical fluctuation of individual melts points, which generally grows larger as the cell 

size is decreased.  As we have implemented the two-phase and Z methods, such statistical 

fluctuations are more problematic for the former method than the latter.  Although for bcc 

metals, our two-phase melt method has been successfully used with as few as 256 atoms 

in 8 ! 4 ! 4  computational cells, including both MGPT-MD and QMD simulations [25], 

this has proven more difficult for the non-bcc Ta phases of interest here.  For the present 

two-phase melt simulations, we find the desirable minimum cell size is 20 !10 !10 , 

corresponding to 4000-16000 atoms for the non-bcc phases, which is already in the large-

cell limit.  Consequently, the second and more important melt size effect, the net 

movement of the melt curve up or down in temperature, is more readily studied with the 

Z method.  By its very construction, the Z-method allows the use of much smaller 

simulation cells, down to 2 ! 2 ! 2 , and with it we test the implications of the size-

dependent stress tensor and anharmonicity discussed above in Sec. III on melt behavior.  

As our primary goal is to address high-T,P  polymorphism in Ta and determine its 

implications for high-pressure melting, we compare the large-cell melt behavior of the 

two-phase simulations and the Z methods, noting the systematic differences between the 

two methods and their consequences for the predicted phase diagram. 

 
A. Two-phase melt curves for large cells 

 
Before discussing the relative stability of our candidate phases predicted from large-cell 

two-phase melt calculations, we briefly elaborate on how size-related effects influence 

the melt behavior with this method.  Although we had initially attempted two-phase 

calculations with smaller 8 ! 4 ! 4 simulation cells, the resulting rapid convergence and 

fluctuation of the  order parameter was difficult to accurately analyze, especially 

for the non-bcc phases.  To sufficiently damp such fluctuations for all phases, we have  

!6 (t)
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Fig. 13  Large-cell smoothing of the melt curve in two-phase MGPT-MD simulations for 

bcc and hcp Ta, as calculated with the Ta6.8x potentials. 

 
found that system sizes no smaller than 20 !10 !10  are required.  To fully smooth the 

melt curves, we have also performed two-phase simulations with much larger cells, with 

~ 80000 atoms for each phase.  This requires simulation cells of 54 ! 27 ! 27  for bcc and 

hcp, 46 ! 23! 23  for hex-ω, 42 ! 21! 21  for fcc, and 34 !17 !17  for A15.  The 

resultant smoothing of the melt curve is illustrated in Fig. 13 for bcc and hcp Ta.  Here 

the increased cell size does not qualitatively change the melt behavior, but the larger cells 

improve the overall quality of the melt curve by removing the small fluctuations present 

in the 20 !10 !10  results.  For this reason, all the remaining two-phase simulations 

discussed below refer to the larger cells with ~ 80000 atoms. 

 
The melt curves calculated from our large-cell two-phase simulations for all five of our 

candidate phases are displayed in Fig. 14.  The most significant feature of these results is 

that the bcc phase has the highest melt curve and hence is predicted to be the most stable 

of the solid phases considered across the entire simulated pressure range, -11 to 420 GPa.   

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400

bcc: 20x10x10
bcc: 54x27x27
hcp: 20x10x10
hcp: 54x27x27

Te
m

pe
ra

tu
re

 (K
)

Pressure (GPa)

Ta



 35 

 
Fig. 14  Melt curves calculated from large-cell, ~ 80000-atom, two-phase MGPT-MD 

simulations with the Ta6.8x potentials for bcc, fcc, hcp, A15, and hex-ω Ta over a 

pressure range of -11 to 420 GPa.  The c / a  ratios used for the hcp and hex-ω structures 

were 1.633 and 0.53, respectively. 

 
In contrast, the hex-ω phase with c / a = 0.53  has the lowest calculated melt curve and 

hence is the least stable of all the considered phases, with melt temperatures 1000-2500 K 

below those of the next most stable phase, hcp.  This may seem to be a surprising result 

in light of the recent QMD studies on Ta [22], which predict a thermodynamically stable 

hex-ω phase above 70 GPa, but the MGPT and QMD results can be readily reconciled in 

terms of size effects and choice of c / a  ratio, as discussed in the next section (Sec. IVB) 

on Z-method melting. 

 
Collectively, the Ta melt curves presented in Fig. 14 represent our most accurate MGPT-

MD results and serve here as a baseline with which to compare large-cell Z-method melt 

results in Sec. IVC below.  Several specific quantitative aspects of these results should 

also be mentioned.  First, the bcc melt curve in Fig. 14 is the same as the two-phase result 

plotted in Fig. 3, so by comparing Figs. 2 and 3 we infer that the two-phase bcc melt 

curve is indeed in good agreement with experiment.  The calculated bcc melt temperature 
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and slope, Tm  and dTm / dP , at P = 0  are 3222 K and 51 K/GPa, respectively – in good 

agreement with experimental measurements of 3270  K [7,11] and ~ 59 K/GPa [11] and 

also in accord with other recent theoretical results [18-20].  The calculated Tm  at the 

observed shock melt pressure of 295 GPa [15] is 10000 K and close to the value recently 

measured by pyrometry of ~ 9700 K.  As a further point of interest in Fig. 14, the A15 

melt curve is seen to approach the bcc melt curve from below at low pressure with the 

two crossing near P = !11  GPa and Tm = 2500  K, while at higher pressure the A15 curve 

moves well below the bcc curve.  This is consistent both with the observed metastability 

of the A15 phase at ambient pressure [1] and with previous MGPT-MD studies [2] in 

which rapid solidification of liquid Ta yielded evidence of both bcc and A15 at low P but 

only bcc at high P.  Finally, the fcc and hcp phases have almost the same melt curves at 

low pressure, but begin to separate above 100 GPa to slightly favor the fcc phase.  By 

fitting a Simon functional form to the melt curves of these phases, we have determined 

that the fcc and hcp curves cross the A15 melt curve at 204 GPa and 267 GPa, 

respectively. 

 
The relationship between the degree of vibrational anharmonicity, Fig. 11, and the 

relative stability of the candidate phases as given by the two-phase simulations, Fig. 14, 

also warrants some additional discussion.  Strictly speaking, there is no necessary or 

established relationship between anharmonicity and relative melt behavior, but we note 

that increased anharmonicity appears to signify a trend in the melt temperature to higher 

pressure in Ta, at least up to about Tm = 7000  K.  For instance, by considering 

Tm = 5000  K in Fig. 14, one sees that  Pm
bcc < Pm

A15 < Pm
fcc ! Pm

hcp < Pm
hex!" , with bcc and 

hex-ω being the most and least stable phases, respectively.  This closely reflects the 

degree of anharmonicity noted at T = 5000  K in Fig. 11, bcc having the smallest 

Qah ! 0.1% and hex-!  having the largest Qah  ranging from 10% to 40%.  Such a trend 

does not necessarily yield the specific details of the melt curves that can be observed 

from two-phase simulations, but it suggests that anharmonicity might be a useful 

diagnostic tool for analyzing melt behavior at lower Tm and Pm . 
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B. Z-method melt curves for small and large cells 
 
An attractive aspect of the Z method is its applicability to small simulations cells – a 

feature that allows the method to be extended to potentially more accurate, but much 

more computationally expensive, quantum simulation techniques like QMD.  However, 

in Z-method QMD simulations, size-independent melt behavior is not guaranteed, and, 

considering the significant effect size has on mechanical stability (Fig. 10) and 

anharmonicity (Fig. 12) in the present MGPT-MD simulations, it is reasonable to expect 

some size-related influence on the melt curves.  We have tested this supposition here by 

performing Z-method MGPT-MD simulations with both small and large simulation cells 

for our candidate phases.  The small cells are composed of 3! 3! 3  unit cells (54-216 

atoms), and the large cell systems have 10 !10 !10  unit cells (2000-8000 atoms).  

Except for the A15 structure with 216 atoms, the small cells are comparable to those used 

in the recent QMD simulations on Ta [22] and Mo [24].  Though the large cells are 

smaller than those we used in the two-phase simulations, we have tested specific melt 

points with cell sizes up to 20 ! 20 ! 20  and found no qualitative difference in the 

resulting melt temperatures, as was similarly noted in the original Z-method MD 

simulations with empirical potentials [34].  Additionally, to eliminate the possibility of 

overestimations of Tc  and Tm  in our implementation of the Z method (Fig. 4), we have 

determined that 20 ps of equilibration is sufficient to allow systems at their critical 

melting point to relax into liquid.  We have used this equilibration time in all of the 

following Z-method MGPT-MD melt simulations discussed below. 

 
Figure 15 shows the results of our small- and large-cell Z-method MGPT-MD melt 

simulations for our five candidate polymorphic phases.  The melt curves for the cubic 

structures are seen to be only slightly altered by size effects, with the bcc and A15 melt 

curves nearly the same and almost unchanged between the small-cell and large-cell 

results, while the fcc melt curve is modestly lowered with respect to the other two in the 

large-cell calculations.  The impact of cell size on the hexagonal structures, on the other 

hand, is quite dramatic.  From the small-cell melt curves displayed in Fig. 15a, one sees 

that the hcp and hex-ω phases are by far the most favorable structures, having melt 

temperatures thousands of degrees higher than those of the cubic structures. 
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Fig. 15  Size dependence of the melt behavior, as obtained from the present Z-method 

MGPT-MD simulations for candidate phases of Ta using the Ta6.8x potentials.  The c / a  

ratios used for the hcp and hex-ω structures were 1.633 and 0.53, respectively.  (a) Small-

cell 3! 3! 3 melt curves; (b) large-cell 10 !10 !10  melt curves. 

 
Conversely, in the large-cell results displayed in Fig. 15b, the hcp and hex-ω melt curve 

have moved below those of the cubic structures, with hcp being slightly less stable than 

bcc and A15, and hex-ω being by far the least stable phase with melt temperatures now 

many thousands of degrees lower than the other phases, in qualitative agreement with the 

two-phase hex-ω melt curve in Fig. 14.  This striking behavior is likely the result of the 

significant effects of cell size on mechanical stability and anharmonicity for the 

hexagonal phases, as shown in Figs. 10 and 12. 

 
Several additional melting features revealed from the present Z-method simulations 

should also be mentioned.  The nearly identical melt behavior of the bcc and A15 

structures is qualitatively the same as obtained by Burakovsky et al. in small-cell QMD 

Z-melt simulations on Ta [22].  From the large-cell results in Fig. 15b, one further sees 

that at low-pressure below about 50 GPa the bcc and A15 phases are the most stable of 

the five phases considered, in qualitative agreement with the large-cell two-phase 

simulations in Fig. 14.  As the pressure is increased, however, and in contrast to two-

phase simulations, the fcc melt curve crosses above the bcc/A15 melt curve above 50 
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GPa and becomes the most stable phase at high pressure.  The behavior of the bcc, A15 

and fcc melt curves is also qualitatively similar to the previous Z-method melt results 

obtained with the Ta4 MGPT potentials [22].  In addition, the position of the large-cell 

hcp melt curve below that of bcc across the entire pressure range to 420 GPa in Fig. 15b 

is in qualitative agreement with the large-cell two-phase results in Fig. 14, as well as with 

the small-cell QMD simulations in Ref. [22].  In contrast to the QMD simulations, 

however, the present small-cell hcp melt curve lies above rather than below the bcc melt 

curve. 

 
Regarding the present Z-method hex-ω melt results in Fig. 15, two further points should 

be made.  First, there is significant quantitative sensitivity in the magnitude of the size 

effect to the c / a  ratio, and this is an important consideration when comparing MGPT-

MD and QMD melt curves, as we do below.  The results shown in Fig. 15 are calculated 

for c / a = 0.53 .  For larger values of c / a , the small-cell hex-ω melt curve is lowered 

toward the bcc melt curve, while the large-cell hex-ω curve is raised toward the bcc 

curve, so the magnitude of the size effect is reduced, but it still remains substantial.  The 

second point to mention is that the energy barrier between hex-ω and liquid Ta is quite 

low, resulting in very small values of Tc !Tm in the Z method.  For the other phases 

considered, this difference is typically  ~ 2000 K, while for hex-ω the difference is more 

like ~ 200 K.  This suggests that, while mechanically stable, the hex-ω phase is only 

slightly more favorable than the super-cooled liquid. 

 
The large size effects found for the hexagonal phases have clear implications for small-

cell applications of the Z-method in QMD, and in particular for the recent prediction of a 

stable high-pressure hex-ω phase in Ta [22].  While QMD provides excellent DFT 

quantum mechanics to establish forces for the molecular dynamics, the validity of the 

statistics produced from such a simulation with a small number of atoms can be 

questioned if size begins to influence structural phase stability through anharmonicity and 

mechanical stability.  In Fig. 16 we attempt to make a valid comparison between MGPT-

MD and QMD predictions of hex-ω and bcc melting, with the hex-ω c / a  ratios used in 

each method established by T = 0  energy minimization, as in Fig. 7b.  The QMD hex-ω  
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Fig. 16  Comparison of MGPT-MD and QMD melt curves for hex-ω and bcc Ta, as 

obtained with the Z method using hex-ω c / a  ratios determined by respective total-

energy minimization at .  (a) MGPT-MD simulation using the Ta6.8x potentials 

with c / a = 0.59 ; (b) QMD simulation [22] with c / a = 0.56 ! 0.58 . 

 
melt curve shown in Fig. 16b is a fit to four Z-melt simulations carried out with small 

cells ranging from 60 to 144 atoms in size [46].  To make comparison with the QMD 

result, we performed both small-cell ( 3! 3! 3 , 81 atom) and large-cell (10 !10 !10 , 

3000 atom) Z-melt simulations for the hex-ω phase with MGPT-MD, using c / a = 0.59 , 

as inferred from Fig. 7b.  We performed additional small-cell hex-ω Z-melt simulations 

for 60 and 144 atoms to confirm that within this small size range the melt curves are 

qualitatively similar.  The small-cell MGPT-MD and QMD hex-ω melt curves displayed 

in Fig. 16 are very consistent with each other qualitatively and quantitatively, with both 

melt curves crossing above the bcc melt curve below 100 GPa.  Our large-cell MGPT-

MD calculation in Fig. 15a shows, however, that size effects will indeed push the hex-ω 

melt curve entirely below the bcc curve.  We expect that a similar size effect will be 

present in QMD, but that clearly requires independent verification.  Although 3000-atom 

QMD Z-melt calculations are probably not feasible, it might be possible to do such 

simulations in the 250-500 atom range to investigate this issue further. 
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C. Two-phase vs. Z-method melt for large cells 

 
Our discussion of Ta melt behavior to this point has focused on understanding the cell-

size influence on the melt curves for candidate polymorphic phases, as obtained with the 

Z method, and calculating with both the two phase and Z methods the large-cell limits of 

melt for these phases, limits which are relevant to the high-T ,P  phase diagram in this 

metal.  We now discuss the remaining differences between the large-cell melt curves of 

each method.  As has been indicated, we believe that the melt curves obtained here from 

the large-cell two-phase simulations are an accurate reflection of the true equilibrium 

thermodynamics for MGPT Ta.  This is supported in the case of bcc melt by close 

agreement with the free-energy determined melt curve (Fig. 3), as well as by good 

agreement with experiment (Figs. 2 and 3; Sec. IVA).  The Z-method, on the other hand, 

is based on the conjectural assumption that for constant volume the solid at its critical 

melt point Tc  has the same internal energy as the liquid at the equilibrium melt point Tm .  

Although in previous test cases [22,34] this assumption has been confirmed for ordinary 

stable phases through comparisons with the two-phase method, the reliability of this 

relationship has not been well established in metastable phases with significant 

vibrational anharmonicity present, especially elastically soft high-temperature phases that 

are only mechanically stabilized by that anharmonicity.  Moreover, as we have already 

shown in Fig. 3, even for stable bcc Ta the MGPT-MD melt curve obtained with the Z 

method is actually just a close upper bound to that obtained by the two-phase method. 

 
Figure 17 compares the large-cell melt curves as calculated with the two-phase and Z 

methods for the remaining non-bcc phases in Ta.  As in the case of the bcc phase, the Z-

method is seen to provide only an upper bound to the melting behavior when compared to 

the two-phase results for the fcc, A15, hcp and hex-ω phases.  The magnitude of the 

apparent Z-method error is, however, much larger and on the order of 1000-3000 K, or 

25-35%, for the fcc, A15, and hcp phases.  The hex-ω phase, on the other hand, as shown 

in Fig. 17b, has a Z-melt curve within ~ 200 K of the two-phase result, so that its melt 

curve is comparable in accuracy to that of the bcc phase.  The upward biasing of Tm  with 

the Z method is especially significant for the fcc phase because, as previously shown in  
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Fig. 17  Comparison of large-cell two-phase (solid lines) and Z-method (dashed lines) 

MGPT-MD melt curves for Ta as calculated from the Ta6.8x potentials.  (a) Cubic 

structures: fcc and A15; (b) hexagonal structures: hcp and hex-ω, with c / a = 1.633  and 

0.53, respectively. 

 
Fig. 15b, it raises the fcc melt curve above that of bcc, leading to an incorrect prediction 

of a stable fcc phase at high pressure.  Similarly, the flat melt profile of the A15 phase at 

high pressure as obtained by the two-phase simulations is largely absent in the Z-method 

result – instead the A15 and bcc phases have practically identical melt curves.  Although 

the Z-melt curve for the hcp phase shows significant increases in melt temperature when 

compared to the two-phase result, the hcp melt curve remains entirely below that of bcc 

in both methods.  Finally, the close similarity of the hex-ω melt curves from the two 

methods is striking, but perhaps it is not entirely surprising given the small energetic 

difference between hex-ω and liquid Ta. 

 
The greater question raised by the comparisons shown in Figs. 3 and 17 is what role 

vibrational anharmonicity plays in the differences observed between Z-method and two-

phase melt curves.  The phases with both the smallest (bcc) and the largest (hex-ω) 

calculated anharmonicity yield the closest agreement between the two methods, while 

phases that display an intermediate degree of anharmonicity (A15, hcp, and fcc) produce 
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the largest differences.  At the same time, and as previously noted in small-cell Z-method 

simulations for hex-ω, large increases in anharmonicity can result in exceptionally large 

increases in melt temperature.  It may be that in the large-cell limit for hex-ω, the strong 

tendency of anharmonicity to push the Z-melt curve higher in temperature is offset by the 

small energetic barrier to melt, in which case the close agreement between the two-phase 

and Z methods for hex-ω in Fig. 17b may be somewhat fortuitous.  But regardless, our 

results suggest that the Z-melt curve is always an upper bound, so that the energy 

required to induce homogeneous melting at Tc  is generally larger than the internal energy 

increase from the solid to the liquid at Tm .  Consequently, the relationship between Tc  

and Tm  is likely more complex than Eq. (8) and possibly involves a number of other 

factors, including the degree of vibrational anharmonicity present and the size of the 

energetic barrier to melt. 

 



V. DISCUSSION: IMPLICATIONS for HIGH-PRESSURE PHASE DIAGRAM 

 
We have presented here an extensive study of polymorphism and melt in high-pressure 

Ta using quantum-based MGPT-MD simulations with new Ta6.8x interatomic potentials.  

This study has focused on candidate bcc, A15, fcc, hcp, and hex-ω phases for the high-

T ,P  phase diagram to 420 GPa, examining the mechanical and relative thermodynamic 

stability of these phases for both small and large computational cells.  The MGPT Ta6.8x 

potentials accurately capture the T = 0  energetics of these phases, as previously 

established from first-principles DFT calculations [22,31], including a highly stable bcc 

ground state, a mechanically stable and competitive A15 structure at low pressure, and 

higher-energy, mechanically unstable fcc, hcp, and hex-ω structures with imaginary 

phonon frequencies.  At high temperature, MGPT-MD simulations demonstrate that the 

fcc, hcp, and hex-ω structures are mechanically stabilized by large, but size-dependent, 

anharmonic vibrational effects.  In the case of the hex-ω structure, the quality of the 

mechanical stability achieved is also found to be a sensitive function of c / a  ratio, with 

good mechanical stability obtained in the range 0.51-0.53.  For higher c / a  values, the 

hex-ω phase partially transforms to bcc and only appears as a mixture with that structure, 

transforming completely to bcc at the ideal c / a = 0.6124 . 

 
Two-phase and Z-method melting techniques have been used in establishing relative 

phase stability and its size dependence at high-T ,P  conditions.  In the large-cell limit, 

the two-phase method provides accurate equilibrium thermodynamics and absolute 

MGPT-MD melt curves for all of the candidate solid phases.  The bcc phase produces the 

highest melt temperatures at all pressures considered and hence is the lone predicted 

stable solid phase in the Ta phase diagram to 420 GPa.  The two-phase bcc melt curve is 

also in good agreement with dynamic experimental data, as well as in close agreement 

with the MGPT melt curve calculated from bcc and liquid free energies.  At the other 

extreme, the hex-ω phase with c / a = 0.53  produces the lowest melt temperatures of the 

structures considered and is only slightly more stable thermodynamically than the super-

cooled liquid.  The melt curves for the remaining metastable A15, fcc, and hcp phases are 

calculated to be within 2000 K of the bcc melt curve, and these phases might be 
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accessible under certain experimental conditions.  In particular, the A15 and bcc melt 

curves approach each other at low pressure, consistent with the observed solidification of 

a metastable A15 phase out of the melt [1]. 

 
In contrast to the two-phase method, we find that the Z method produces only an upper 

bound to the melt behavior in the large-cell limit.  For the bcc and hex-ω phases the Z-

melt curves are within 5% of the corresponding two-phase results, but for the A15, fcc, 

and hcp phases the Z-melt curves are 25-35% higher in temperature.  This leads to the 

incorrect prediction of a stable fcc solid phase at high pressure with the Z method.  

Nonetheless, the Z method has allowed us to examine carefully size effects on the melt 

behavior in Ta with MGPT-MD simulations.  We find that such size effects are small for 

bcc and A15, modest for fcc, but quite large for the hexagonal hcp and hex-ω structures, 

with the melt curves for the latter phases lying above that of bcc for small simulation 

cells with less that 150 atoms, but with these curves being pushed below bcc in the large-

cell limit.  We have further shown that the size effects on the melt curve are driven by 

and closely correlated with similar size effects on vibrational anharmonicity, as measured 

by the thermal energy, and on mechanical stability, as measured by the stress tensor.  We 

conclude that for the non-bcc metastable phases in Ta, one requires simulation cells of at 

least 250-500 atoms to be safely free of such size effects. 

 
Additional Z-melt MGPT-MD simulations for hex-ω with the c / a  ratio determined by 

T = 0  energy minimization have also allowed us to compare our results directly with the 

small-cell QMD prediction [22] of a stable high-pressure hex-ω phase in Ta.  Under the 

assumed conditions, our small-cell MGPT-MD results confirm the QMD prediction, with 

the hex-ω melt curve crossing above that of bcc below 100 GPa.  However, when the 

same calculation is repeated in the large-cell limit, the hex-ω melt curve is again pushed 

entirely below the bcc melt curve.  Whether or not this would also be the case in QMD 

requires much larger simulations than have currently been attempted for bcc transition 

metals [22,24] to answer, but both two-phase and Z-melt QMD simulations in the 250-

500 atom range for Ta should be feasible. 
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In any future theoretical investigations of high-T ,P  polymorphism in transition metals, it 

would be desirable to entertain other considerations as well.  One such consideration is 

the use of variable-shaped simulation cells as opposed to the fixed-shaped cells that have 

been used heretofore.  The use of a variable-shaped cell is clearly more computationally 

challenging, but it would allow the full relaxation of structures with internal degrees of 

freedom such as hex-ω, so that, for example, the simulation could decide the optimum 

c / a  ratio in any environment and not have that choice imposed as an external constraint.  

This would also allow the possibility of treating complex structures with more than two 

atoms per primitive cell.  Another possible consideration in this regard is the use of 

genetic algorithms or similar techniques to generate additional candidate structures.  In 

the case of Mo, for example, the use of genetic algorithms recently uncovered several 

complex structures with T = 0  energies much closer to that of bcc than is the case for the 

fcc, hcp or hex-ω structures [47]. 

 
Finally, there is clearly a need for more and better experimental data, both static and 

dynamic, to constrain the phase diagram at high-T ,P  conditions in bcc transition metals.  

While the existing sound velocity data along the shock Hugoniot in Mo [17] and Ta 

[15,22] suggest possible solid-solid phase transitions prior to melt, this is far from a 

certain conclusion.  In both cases, for example, the removal of a single point from the 

data set would argue against such a transition.  As a result, there is currently an ongoing 

experimental effort to repeat these measurements more accurately [48].  The correct 

interpretation of the flat DAC melting curves in bcc metals [7-9] is also an open question.  

The disappearance of bcc x-ray diffraction lines, which was interpreted as melting in 

these experiments, could instead be the result of some other phenomena, including 

unwanted chemical reactions [28] or the onset of rapid recrystallization associated with a 

solid-solid phase transition [22].  To date, however, no other solid structure than bcc has 

been identified by x-ray diffraction in high-T ,P  DAC experiments on these materials.  

The use of x-ray diffraction in dynamic high-T ,P  investigations of the phase diagram is 

also an interesting possibility for the future.  In laser-driven shock experiments on iron 

[49], for example, nanosecond x-ray diffraction has been used to make direct observation 

of the well-known bcc to hcp phase transition at 13 GPa. 
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